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The problem of antiplane deformation for a wedge-shaped region containing a uniformly moving screw dis!ocation is considered. 
A general solution of the problem is obtained using Laplace and Kontorovich-Lebedev integral transformations. It is shown 
during the solution that the method is suitable for a wedge apex angle greater than n. The limiting ease, when the wedge-shaped 
region is a half-plane, is also considered. For this case the solution can be simplified considerably. © 1999 Elsevier Science Ltd. 
All rights reserved. 

Problems of the unsteady motion of an edge dislocation in a half-plane [1], on the interaction of a moving screw 
dislocation and a cylindrical inclusion [2], and the problem of the motion of a screw dislocation in a strip [3] have 
been considered previously. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a wedge-shaped region -tO < 0 < tO (0 is the polar angle) which contains a screw dislocation moving 
uniformly along a ray 0 = 0 with velocity v. At the boundary of the region the strict closure condition 

uo(r, 0, z. t)h~-~o = 0, t > 0 (1.1) 

is given, where u0 = (u,o, u00, uzo) is the displacement vector. We will seek a solution in the form 

U 0 = U dis + U 

where the displacement vector u a/~ describes the motion of the screw dislocation in the plane while u is the effect 
of the wedge boundary. The equations describing the motion of the screw dislocation have the form [4] 

dis 0, U dis = 0 14 r 

ai~ (tO,, t) = g[~(r'O't)- rl(r'O't)' 0 < 0 < n  (1.2) 
U z "  

[--(~(r,0, t) - rl(r,0,t)), - x < 0 < 0 

~(r,0,t) = ~ aretg;(r,0,t), rl(r,O,t)= b H(;(r,0,t)) 

r c o s O - a - v t '  "[= , c =  

where b is the value of the Burgers vector, c is the propagation velocity of transverse waves, a > 0 is the distance 
from the origin of coordinates to the vertex of the dislocation at the instant of time t = 0, H(x) is the Heaviside 
function, while the branch arctg is chosen so that arctg(z) e (-n/2, n/2). 

By virtue of boundary conditions (1.1) and formulae (1.2), it is sufficient to determine the third component of 
the displacement vector u = (u,, uo, uz), since the other two are zero. The required function uz = w(r, O, t) must 
satisfy the following equation in the region considered 

~2w l ~w 1 02w 1 ~2w 
Or---~-+r ~--~-+ r--- ~ 002 c2 t~t2 = 0  (1.3) 

r > 0, t > 0,--(p < 0 < to 

and the following conditions on the boundary of the region 
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w(r, 0, t)10=+~ = -w(r, O, t)l~-~ = --(~(r, £0, t) - rl(r, £0, t)) (1.4) 

In addition, the following condition must be satisfied 

w(r,O,t)--->O as t--h+*. (1.5) 

which denotes that the effect of the dislocation on the boundary of the wedge-shaped region decreases with 
time. 

2. S O L U T I O N  

We will seek a solution in the form w = w ~ + w/', where the functions w ~ and w h satisfy Eq. (1.3) inside the wedge 
and the following conditions on the boundary 

wa(r, O, t ) lom = - )ca(  r, O, t)l~_.~ = j ( r ,  t) = --~(r, q~, t) 

wS(r, O, OIo=,~ = -wh( r, O. t)l~_.-~ = ~(r, {p, t) 

(2.1) 

(2.2) 

It can be shown that the function 

¢v~p = K,z ( P r > ~ . s h ( ~ . ) ~ ( A ( 3 . , p ) ~ +  B ( 2 ~ , p ) ~ > e  - , '  (2.3) 

whereA(;L,p), B(~.,p) are certain unknown functions andp is a real and positive parameter, is a particular solution 
of Eq. (1.3). Integrating Eq. (2.3) with respect to X andp  from 0 to +oo, we obtain a solution of Eq. (1.3), which 
depends on the derivatives of the functions A(X, p), B(X, p) 

+** +** o -h~2~O ~ w (r,O,t>= ~ ~ _--~2ksh(.2k>(a(~.,p> .-7-7;'~._. B(~.,p)ch.!~O!)K,9,(Pr>e-Ptd'A.dp 
o o ~ snttap) cn(~.~p) c 

(2.4) 

To determine the functions A (X, p) and B(~., p) we use boundary conditions (2.1) 

0 0 ~ ¢ 

(2.5) 

(either the upper or lower signs are taken simultaneously). 
Applying an inverse Laplace transformation and a direct Kontorovich-Lebedev transformation to the function 

f(r, t), we obtain 

f(r,t) = J ~ 2_-~2~sh(x~.)fO.,p)K~, (P r)e'pt arAdp 
O 0  ~ C 

(2.6) 

where 

4"** I d+i** 
?(~.,p)= Ig(r,p)K,.~(Pr) dr, g(r,p)=-~ I f (r,t)eptdt (2.7) 

o c r ~ d-io. 

Equating the integrands in (2.5) and (2.6), we obtain the unknown functions 

A(2k, p) = f(X,p), B(~p) = 0 

We will now analyse the solution obtained. Applying formula 5.8 (17) of [5] we obtain 

b a r e o s ~  " g(r,p) = ~-~exp ( -vP)exp (  v p)exp(TrSm@v p) (2.8) 

The last factor on the right-hand side increases without limit when 0 < ~p < n/2 as r ~ +oo. The Kontorovich- 
Lebedev transformation cannot be used in this case, and hence we will confine ourselves to considering a wedge 
with apex angle n/2 < ~p < n. It can be shown that the function g(r, p) satisfies the sufficient conditions for the 
Kontorovich-Lebedev transformation to be applicable [6] 

i 
I g(r.p)lr -I l n l e  LI(O,2); I g(r,p) lr - ~  e Li(~. +o*) (2.9) 
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Note that when rt/2 < (p < n, by virtue of boundary conditions (2.2), the function n/' - 0, and consequently w = w ~. 
We rewrite (2.8) in the form 

b a 
g(r ,p)  = - - ~ e x p ( - v P ) ( e x p ( - r z ) - e x p ( - r ~ ) ) ,  z = - P (cosq~ + / ~ ' s i n ( P ) v  

To evaluate integral (2.7) we will use the properties of the Laplace transformation 

Texp(-zr)Ki~. (P r) dr = "~ ~*exp(-sr)Ka. (P  r)drds 
o c r z o c 

(2.10) 

Using the expression for the Laplace transform for the function Ki~(rp/c) (formula 4.16 (24) in [5]) and evaluating 
the outer integral in (2.10), we obtain 

b~ 1 a cz c~ 
e x p ( - -  p)(cos(;karcch--)- cos(karcch u ) )  

4pi  ks~l t~ . )  v v v 

where Im(arccho)) = I m ( i n ( J  - 1) ~ (-r~, ~). 

3. T H E  C A S E  O F  A H A L F - P L A N E  

Let us consider a half-plane as the wedge-shaped region. In this case, boundary conditions (2.1) become 

w(r,O,t)lo=~/2 =-w(r,O,t~off i_z/2 = f ( r , t ) = - ~  Tr arctg - a  - vt 

Using the formula for the inverse Laplace transformation for the function f(r,  t), we obtain 

g( r ,p )  = ~ b  exp(- a p) sin(rp ~) (3.1) 
z~p v v 

Condition (2.9) is not satisfied for the function g(r, p )  but the Kontorovich-Lebedev formula still applies 

~(;~, p) b a sin(ks) arcsh ~-- > 0 = ~ exp(- v p) s = ~h(n~./2) ; 

Applying an inverse Kontorovich-Lebedev transformation to the solution (formula 12.1(2) of [7]) and using a 
Laplace transformation (formula 4.5(4) of [5]), we obtain 

b . ry  sin 0 
w(r,O,t)  = 7 "  arctg _ (3.2) 

z~ rcoslJ + a + vt 

For the displacement Uzo(X,y, t) we obtain, in a Cartesian system of coordinates 

b Y)' + arctg Yl' ) (3.3) 
Uzo(X, y, t) = ~-~ (arctg x + a + vt x - a - vt 

The method of reflections gives a similar result. It can be proved that solution (3.3) holds both when y > 0 and 
when v < 0. 

Thus, when the initial configuration is identical with an elastic half-plane, the stress at the boundary is 

fix=Ix=0- lab 2y't' 
- - 2"~ (y?)~" + (a + vt) 2 

where p. is the shear modulus. When v > 0 the absolute value of axz falls off as O(t -2) when t ~ +oo. Hence, if we 
know the stresses at an arbitrary point on the boundary at different instants of time, we can determine both the 
direction of a uniformly moving screw dislocation and its position with respect to the point of observation. 

I wish to thank M. V. Paukshto for suggesting the problem and for his help. 

R E F E R E N C E S  

1. MARKENSCOFE X. and CLIFTON, R. J., The nonuniformly moving edge dislocation. J. Mech. Phys. Solids, 1981, 29, 253-262. 
2. PRASAD, S. B., Interaction between moving screw dislocation and an elastic circular cylindrical inclusion. Ganita, 1995, 46, 

73-80. 



140 S.V. Sizov 

3. HIRTH, J. P. and LOTHE, J., Theory of Dislocations. McGraw-Hill, New York, 1968. 
4. TEODOSlU, C., Elastic Models of Crystal Defects. Editura Academiei Bucuresti. Springer, Berlin, 1982. 
5. BATEMAN, H. and ERDI~LYI, A., Tables of Integral Transforms, Vol. 1. McGraw-Hill, New York, 1954. 
6. LEBEDEV, N. N., SKAL'SKAYA, I. R and UFLYAND, Ya. S.,A Collection of Problems in Mathematical Physics. Gostekhizdat, 

Moscow, 1955. 
7. BATEMAN, H. and ERDI~LYI, A., Tables of Integral Transforms, Vol. 2. McGraw-Hill, New York, 1954. 

Translated by R.C.G. 


