THE MOTION OF A SCREW DISLOCATION IN A WEDGE-SHAPED REGION \dagger

S. V. SIZOV
St Petersburg
(Received 15 May 1997)

The problem of antiplane deformation for a wedge-shaped region containing a uniformly moving screw dislocation is considered. A general solution of the problem is obtained using Laplace and Kontorovich-Lebedev integral transformations. It is shown during the solution that the method is suitable for a wedge apex angle greater than π. The limiting case, when the wedge-shaped region is a half-plane, is also considered. For this case the solution can be simplified considerably. © 1999 Elsevier Science Ltd. All rights reserved.

Problems of the unsteady motion of an edge dislocation in a half-plane [1], on the interaction of a moving screw dislocation and a cylindrical inclusion [2], and the problem of the motion of a screw dislocation in a strip [3] have been considered previously.

1. FORMULATION OF THE PROBLEM

Consider a wedge-shaped region $-\varphi<\theta<\varphi(\theta$ is the polar angle) which contains a screw dislocation moving uniformly along a ray $\theta=0$ with velocity v. At the boundary of the region the strict closure condition

$$
\begin{equation*}
\left.\mathbf{u}_{0}(r, \theta, z, t)\right|_{\theta= \pm \varphi}=0, t>0 \tag{1.1}
\end{equation*}
$$

is given, where $u_{0}=\left(u_{r 0}, u_{\theta 0}, u_{20}\right)$ is the displacement vector. We will seek a solution in the form

$$
\mathbf{u}_{0}=\mathbf{u}^{d i s}+\mathbf{u}
$$

where the displacement vector $\mathbf{u}^{\text {dis }}$ describes the motion of the screw dislocation in the plane while \mathbf{u} is the effect of the wedge boundary. The equations describing the motion of the screw dislocation have the form [4]

$$
\left.\left.\begin{array}{c}
u_{r}^{d i s}=0, u_{\theta}^{d i s}=0
\end{array}\right] \begin{array}{l}
u_{z}^{d i s}(r, \theta, t)=\left\{\begin{array}{l}
\xi(r, \theta, t)-\eta(r, \theta, t), 0<\theta<\pi \\
-(\xi(r, \theta, t)-\eta(r, \theta, t)),-\pi<\theta<0
\end{array}\right. \\
\xi(r, \theta, t)=\frac{b}{2 \pi} \operatorname{arctg} \zeta(r, \theta, t), \eta(r, \theta, t)=\frac{b}{2} H(\zeta(r, \theta, t))
\end{array}\right\} \begin{aligned}
& \zeta(r, \theta, t)=\frac{\gamma r \sin \theta}{r \cos \theta-a-v t}, \gamma=\sqrt{1-\frac{v^{2}}{c^{2}}}, c=\sqrt{\frac{\mu}{\rho}} \tag{1.2}
\end{aligned}
$$

where b is the value of the Burgers vector, c is the propagation velocity of transverse waves, $a>0$ is the distance from the origin of coordinates to the vertex of the dislocation at the instant of time $t=0, H(x)$ is the Heaviside function, while the branch arctg is chosen so that $\operatorname{arctg}(z) \in(-\pi / 2, \pi / 2)$.

By virtue of boundary conditions (1.1) and formulae (1.2), it is sufficient to determine the third component of the displacement vector $\mathbf{u}=\left(u_{r}, u_{\theta}, u_{z}\right)$, since the other two are zero. The required function $u_{z}=w(r, \theta, t)$ must satisfy the following equation in the region considered

$$
\begin{align*}
& \frac{\partial^{2} w}{\partial r^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} w}{\partial t^{2}}=0 \tag{1.3}\\
& r>0, \imath>0,-\varphi<\theta<\varphi
\end{align*}
$$

and the following conditions on the boundary of the region
\dagger Prikl. Mat. Mekh. Vol. 63, No. 1, pp. 149-152, 1999.

$$
\begin{equation*}
\left.w(r, \theta, t)\right|_{\theta=+\varphi}=-\left.w(r, \theta, t)\right|_{\theta=-\varphi}=-(\xi(r, \varphi, t)-\eta(r, \varphi, t)) \tag{1.4}
\end{equation*}
$$

In addition, the following condition must be satisfied

$$
\begin{equation*}
w(r, \theta, t) \rightarrow 0 \text { as } t \rightarrow+\infty \tag{1.5}
\end{equation*}
$$

which denotes that the effect of the dislocation on the boundary of the wedge-shaped region decreases with time.

2. SOLUTION

We will seek a solution in the form $w=w^{a}+w^{h}$, where the functions w^{a} and w^{h} satisfy Eq. (1.3) inside the wedge and the following conditions on the boundary

$$
\begin{align*}
& \left.w^{\alpha}(r, \theta, t)\right|_{\theta=+\varphi}=-\left.w^{a}(r, \theta, t)\right|_{\theta=-\varphi}=f(r, t)=-\xi(r, \varphi, t) \tag{2.1}\\
& \left.w^{h}(r, \theta, t)\right|_{\theta=+\varphi}=-\left.w^{h}(r, \theta, t)\right|_{\theta=-\varphi}=\eta(r, \varphi, t) \tag{2.2}
\end{align*}
$$

It can be shown that the function

$$
\begin{equation*}
\hat{w}_{\lambda p}^{a}=K_{i \lambda}\left(\frac{p}{c} r\right) \lambda \operatorname{sh}(\pi \lambda) \frac{2}{\pi^{2}}\left(A(\lambda, p) \frac{\operatorname{sh}(\lambda \theta)}{\operatorname{sh}(\lambda \varphi)}+B(\lambda, p) \frac{\operatorname{ch}(\lambda \theta)}{\operatorname{ch}(\lambda \varphi)}\right) e^{-p t} \tag{2.3}
\end{equation*}
$$

where $A(\lambda, p), B(\lambda, p)$ are certain unknown functions and p is a real and positive parameter, is a particular solution of Eq. (1.3). Integrating Eq. (2.3) with respect to λ and p from 0 to $+\infty$, we obtain a solution of Eq. (1.3), which depends on the derivatives of the functions $A(\lambda, p), B(\lambda, p)$

$$
\begin{equation*}
w^{a}(r, \theta, t)=\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{2}{\pi^{2}} \lambda \operatorname{sh}(\pi \lambda)\left(A(\lambda, p) \frac{\operatorname{sh}(\lambda \theta)}{\operatorname{sh}(\lambda \varphi)}+B(\lambda, p) \frac{\operatorname{ch}(\lambda \theta)}{\operatorname{ch}(\lambda \varphi)}\right) \mathrm{K}_{i \lambda}\left(\frac{p}{c} r\right) \mathrm{e}^{-p t} d \lambda d p \tag{2.4}
\end{equation*}
$$

To determine the functions $A(\lambda, p)$ and $B(\lambda, p)$ we use boundary conditions (2.1)

$$
\begin{equation*}
\left.w^{a}(r, \theta, t)\right|_{\theta= \pm \varphi}=\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{2}{\pi^{2}} \lambda \operatorname{sh}(\pi \lambda)(\pm A(\lambda, p)+B(\lambda, p)) \mathrm{K}_{i \lambda}\left(\frac{p}{c} r\right) \mathrm{e}^{-p t} d \lambda d p= \pm f(r, t) \tag{2.5}
\end{equation*}
$$

(either the upper or lower signs are taken simultaneously).
Applying an inverse Laplace transformation and a direct Kontorovich-Lebedev transformation to the function $f(r, t)$, we obtain

$$
\begin{equation*}
f(r, t)=\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{2}{\pi^{2}} \lambda \operatorname{sh}(\pi \lambda) \hat{f}(\lambda, p) \mathrm{K}_{i \lambda}\left(\frac{p}{c} r\right) \mathrm{e}^{-p r} d \lambda d p \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{f}(\lambda, p)=\int_{0}^{+\infty} g(r, p) \mathrm{K}_{i \lambda}\left(\frac{p}{c} r\right) \frac{d r}{r}, g(r, p)=\frac{1}{2 \pi} \int_{d-i \infty}^{d+i \infty} f(r, t) \mathrm{e}^{p t} d t \tag{2.7}
\end{equation*}
$$

Equating the integrands in (2.5) and (2.6), we obtain the unknown functions

$$
A(\lambda, p)=\hat{f}(\lambda, p), \quad B(\lambda, p)=0
$$

We will now analyse the solution obtained. Applying formula 5.8 (17) of [5] we obtain

$$
\begin{equation*}
g(r, p)=\frac{b}{2 \pi p} \exp \left(-\frac{a}{v} p\right) \exp \left(\frac{r \cos \varphi}{v} p\right) \exp \left(\frac{\gamma r \sin \varphi}{v} p\right) \tag{2.8}
\end{equation*}
$$

The last factor on the right-hand side increases without limit when $0<\varphi<\pi / 2$ as $r \rightarrow+\infty$. The KontorovichLebedev transformation cannot be used in this case, and hence we will confine ourselves to considering a wedge with apex angle $\pi / 2<\varphi<\pi$. It can be shown that the function $g(r, p)$ satisfies the sufficient conditions for the Kontorovich-Lebedev transformation to be applicable [6]

$$
\begin{equation*}
|g(r, p)| r^{-1} \ln \frac{1}{r} \in L_{1}\left(0, \frac{1}{2}\right), \lg (r, p) \left\lvert\, r^{-1 / 2} \in L_{1}\left(\frac{1}{2},+\infty\right)\right. \tag{2.9}
\end{equation*}
$$

Note that when $\pi / 2<\varphi<\pi$, by virtue of boundary conditions (2.2), the function $w^{h} \equiv 0$, and consequently $w=w^{\mu}$. We rewrite (2.8) in the form

$$
g(r, p)=\frac{b}{4 \pi p i} \exp \left(-\frac{a}{v} p\right)(\exp (-r z)-\exp (-r \bar{z})), z=-\frac{p}{v}(\cos \varphi+i \gamma \sin \varphi)
$$

To evaluate integral (2.7) we will use the properties of the Laplace transformation

$$
\begin{equation*}
\int_{0}^{+\infty} \exp (-z r) \mathrm{K}_{i \lambda}\left(\frac{p}{c} r\right) \frac{d r}{r}=\int_{z}^{+\infty} \int_{0}^{+\infty} \exp (-s r) \mathrm{K}_{i \lambda}\left(\frac{p}{c} r\right) d r d s \tag{2.10}
\end{equation*}
$$

Using the expression for the Laplace transform for the function $K_{i \lambda}(r p / c)$ (formula 4.16 (24) in [5]) and evaluating the outer integral in (2.10), we obtain

$$
\hat{f}(\lambda, p)=\frac{b \pi}{4 p i} \frac{1}{\lambda \operatorname{sh}(\pi \lambda)} \exp \left(-\frac{a}{v} p\right)\left(\cos \left(\lambda \operatorname{arcch} \frac{c z}{v}\right)-\cos \left(\lambda \operatorname{arcch} \frac{c \bar{z}}{v}\right)\right)
$$

where $\operatorname{Im}(\operatorname{arcch} \omega)=\operatorname{Im}\left(\ln \left(\omega^{2}-1\right) \in(-\pi, \pi)\right.$.

3. THE CASE OF A HALF-PLANE

Let us consider a half-plane as the wedge-shaped region. In this case, boundary conditions (2.1) become

$$
\left.w(r, \theta, t)\right|_{\theta=\kappa / 2}=-\left.w(r, \theta, t)\right|_{\theta=-\pi / 2}=f(r, t)=-\frac{b}{2 \pi} \operatorname{arctg} \frac{\gamma r}{-a-v t}
$$

Using the formula for the inverse Laplace transformation for the function $f(r, t)$, we obtain

$$
\begin{equation*}
g(r, p)=\frac{b}{2 \pi p} \exp \left(-\frac{a}{v} p\right) \sin \left(r p \frac{\gamma}{v}\right) \tag{3.1}
\end{equation*}
$$

Condition (2.9) is not satisfied for the function $g(r, p)$ but the Kontorovich-Lebedev formula still applies

$$
\hat{f}(\lambda, p)=\frac{b}{4 p} \exp \left(-\frac{a}{v} p\right) \frac{\sin (\lambda s)}{\lambda \operatorname{ch}(\pi \lambda / 2)} ; s=\operatorname{arcsh} \frac{c \gamma}{v}>0
$$

Applying an inverse Kontorovich-Lebedev transformation to the solution (formula 12.1(2) of [7]) and using a Laplace transformation (formula 4.5(4) of [5]), we obtain

$$
\begin{equation*}
w(r, \theta, t)=\frac{b}{2 \pi} \operatorname{arctg} \frac{r \gamma \sin \theta}{r \cos \theta+a+v t} \tag{3.2}
\end{equation*}
$$

For the displacement $u_{z 0}(x, y, t)$ we obtain, in a Cartesian system of coordinates

$$
\begin{equation*}
u_{z 0}(x, y, t)=\frac{b}{2 \pi}\left(\operatorname{arctg} \frac{y \gamma}{x+a+v t}+\operatorname{arctg} \frac{y \gamma}{x-a-v t}\right) \tag{3.3}
\end{equation*}
$$

The method of reflections gives a similar result. It can be proved that solution (3.3) holds both when $y>0$ and when $v<0$.

Thus, when the initial configuration is identical with an elastic half-plane, the stress at the boundary is

$$
\left.\sigma_{x z}\right|_{x=0}=-\frac{\mu b}{2 \pi} \frac{2 y \gamma}{(y \gamma)^{2}+(a+v t)^{2}}
$$

where μ is the shear modulus. When $v>0$ the absolute value of $\sigma_{x z}$ falls off as $O\left(t^{-2}\right)$ when $t \rightarrow+\infty$. Hence, if we know the stresses at an arbitrary point on the boundary at different instants of time, we can determine both the direction of a uniformly moving screw dislocation and its position with respect to the point of observation.

I wish to thank M. V. Paukshto for suggesting the problem and for his help.

REFERENCES

1. MARKENSCOFF, X. and CLIFTON, R. J., The nonuniformly moving edge dislocation. J. Mech. Phys. Solids, 1981, 29, 253-262.
2. PRASAD, S. B., Interaction between moving screw dislocation and an elastic circular cylindrical inclusion. Ganita, 1995, 46, 73-80.
3. HIRTH, J. P. and LOTHE, J., Theory of Dislocations. McGraw-Hill, New York, 1968.
4. TEODOSIU, C., Elastic Models of Crystal Defects. Editura Academiei Bucuresti. Springer, Berlin, 1982.
5. BATEMAN, H. and ERDÉLYI, A., Tables of Integral Transforms, Vol. 1. McGraw-Hill, New York, 1954.
6. LEBEDEV, N. N., SKAL'SKAYA, I. P. and UFLYAND, Ya. S., A Collection of Problems in Mathematical Physics. Gostekhizdat, Moscow, 1955.
7. BATEMAN, H. and ERDÉLYI, A., Tables of Integral Transforms, Vol. 2. McGraw-Hill, New York, 1954.

Translated by R.C.G.

