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THE MOTION OF A SCREW DISLOCATION
IN A WEDGE-SHAPED REGIONY
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The problem of antiplane deformation for a wedge-shaped region containing a uniformly moving screw dislocation is considered.
A general solution of the problem is obtained using Laplace and Kontorovich-Lebedev integral transformations. It is shown
during the solution that the method is suitable for a wedge apex angle greater than =. The limiting case, when the wedge-shaped
region is a half-plane, is also considered. For this case the solution can be simplified considerably. © 1999 Elsevier Science Ltd.
All rights reserved.

Problems of the unsteady motion of an edge dislocation in a half-plane [1], on the interaction of a moving screw
dislocation and a cylindrical inclusion [2], and the problem of the motion of a screw dislocation in a strip [3] have
been considered previously.

1. FORMULATION OF THE PROBLEM

Consider a wedge-shaped region —¢ < 6 < ¢ (0 is the polar angle) which contains a screw dislocation moving
uniformly along a ray 6 = 0 with velocity v. At the boundary of the region the strict closure condition

ug(r, 8, z, Dlg=trp=0,1>0 (1.1)
is given, where uy = (1, Ugg, U,) is the displacement vector. We will seek a solution in the form
u= s 4 u

where the displacement vector u?* describes the motion of the screw dislocation in the plane while u is the effect
of the wedge boundary. The equations describing the motion of the screw dislocation have the form [4]

du =0, udts =0

dn'( 0.t 0= §(r.9,t)—n(r,9.t),0<9<n (12)
~(&(r,0,0)-(r.8,)), —n<B<0

&(r,0,1)= Eb; arctgl(r,0,0), N(r,6,) = 4 H(C(r, 0,1))

__Yrsin@
,0,0) = ’ ,c= ,
8= rcos8—a—vt' 2 €=

where b is the value of the Burgers vector, c is the propagation velocity of transverse waves, @ > 0 is the distance
from the origin of coordinates to the vertex of the dislocation at the instant of time ¢ = 0, H(x) is the Heaviside
function, while the branch arctg is chosen so that arctg(z) € (-n/2, n/2).

By virtue of boundary conditions (1.1) and formulae (1.2), it is sufficient to determine the third component of
the displacement vector u = (u,, ug, u,), since the other two are zero. The required function u, = w(r, 8, f) must
satisfy the following equation in the region considered

Fw 1ow 13w 1 3w

g t——t g -3 =0 13
art ror r*oe® ¢*or (13)
r>0,>0,-9<9<o

and the following conditions on the boundary of the region
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w(r, 8, Dlg=sg = —W(r, 8, Dig=—gp =~E(r. ¢, ) —M(r, 9, 1)) (1.4)
In addition, the following condition must be satisfied
w(r,9,1) >0 as t— +oo (1.5)

which denotes that the effect of the dislocation on the boundary of the wedge-shaped region decreases with
time.

2. SOLUTION

We will seek a solution in the form w = w” + w", where the functions w” and w” satisfy Eq. (1.3) inside the wedge
and the following conditions on the boundary

WA(r, 0, Nlgasg = -W(r, 8, Dlg=—o =Ar, ) =X, 9, ) (2.1)
wi(r, 8, Dlgeip = -WH(r, 8, Dlo=yp =N(r. 9, 1) 2.2)
It can be shown that the function

ca v P 2 sh(AB)
wi_'p = Km (: r)l.sh(n)\.);c—z- (A()., P) Sh(l¢)

where A(A, p), B(A, p) are certain unknown functions and p is a real and positive parameter, is a particular solution
of Eq. (1.3). Integrating Eq. (2.3) with respect to A and p from 0 to +, we obtain a solution of Eq. (1.3), which
depends on the derivatives of the functions A(A, p), B(A, p)

ch(A8). _,
)

+B(\, p) (2.3)

aroy= [ | 2AhmANAQ, p) A0
w (rvevt) (I) (J; 1!2 (1t )( ( ’p’Sh(m)

To determine the functions A(A, p) and B(A, p) we use boundary conditions (2.1)

, ch(A8)
+ B()n p) Ch(k(p)

)K,l(lc’- re P d\dp (2.9)

a toodes 5 P\ —pt
w (r,e,t)l.,:,,, = (j) (I) Flsh(nk)(:tAO»,pHB(l,p))Km(;r)e dhdp = £f(r.1) (2.5)

(either the upper or lower signs are taken simultaneously).
Applying an inverse Laplace transformation and a direct Kontorovich-Lebedev transformation to the function
f(r, t), we obtain

re0=17 ZAsh(AIF O, pIKa (e dhdp 2.6)
where
R +o0 ) i d+ivo
Fum= (g pKa B, grpy = | firnePdr @7
) c r 2r d—ioo

Equating the integrands in (2.5) and (2.6), we obtain the unknown functions

AL p)=fAp). BAp)=0

We will now analyse the solution obtained. Applying formula 5.8 (17) of [5] we obtain

=2 ) 28)

gr,p)= %exp(—% p) exp(rcts‘p p)exp

The last factor on the right-hand side increases without limit when 0 < ¢ < n/2 as r & +«. The Kontorovich-
Lebedev transformation cannot be used in this case, and hence we will confine ourselves to considering a wedge
with apex angle n/2 < ¢ < =. It can be shown that the function g(r, p) satisfies the sufficient conditions for the
Kontorovich~Lebedev transformation to be applicable {6]

- 1
Igr.p)1r™! ln% € L,(O,—;-), lgr.p)r 2 e Li(+2) 2.9)
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Note that when n/2 < @ < , by virtue of boundary conditions (2.2), the function w” =0, and consequently w = w*.
We rewrite (2.8) in the form

b - -
g(r.p)= ——-.exp(—f-p)(exp(—rz) ~exp(-r2)), z= —ﬁ(cosq) +#ysing)
4rnpi 12 v
To evaluate integral (2.7) we will use the properties of the Laplace transformation
+oo d 400 400
Jexp(-zrK o (2 = | [expl-srK, (£ r)drds (2.10)
0 c r z 0 c

Using the expression for the Laplace transform for the function K, (rp/c) (formula 4.16 (24) in [5]) and evaluating
the outer integral in (2.10), we obtain

f(hp)=—bf— !

a ford cz
api oD exp(—-; pXcos(Aarcch . )—cos(MrcchT))

where Im(arccho) = Im(In(0® - 1) € (-, 7).

3. THE CASE OF A HALF-PLANE

Let us consider a half-plane as the wedge-shaped region. In this case, boundary conditions (2.1) become

b

—~a—vt

b
W(f,e,’)|9="/2 = —W(r,9,1)|9=_,,/2 = f(r,t) = —?Eafctg
Using the formula for the inverse Laplace transformation for the function f(r, r), we obtain
glr.p)= Eb;exr’(-% p)sin(m—z-) 3.1)

Condition (2.9) is not satisfied for the function g(r, p) but the Kontorovich-Lebedev formula still applies

sin(hs) ;. s = arcsh @ >0

- b a
f.p)y= TECXP(_TP)—'—xch D "

Applying an inverse Kontorovich-Lebedev transformation to the solution (formula 12.1(2) of [7]) and using a
Laplace transformation (formula 4.5(4) of [5]), we obtain

rysin@

b
,0,1) = — arctg ———————— .
wr.8.0) 21ca grcose+a+vt (3.2)
For the displacement u,(x, y, f) we obtain, in a Cartesian system of coordinates
b Y b4
, y,4) = ——(arct + arct 33
U0 (%:3.1) 21t(angx+a+vt arch—a—vt) (33)

The method of reflections gives a similar result. It can be proved that solution (3.3) holds both wheny > 0 and
whenv < 0.
Thus, when the initial configuration is identical with an elastic half-plane, the stress at the boundary is

O PP A | —
==0""08 () +(a+ )
where p is the shear modulus. When v > 0 the absolute value of o,, falls off as O(r %) when ¢ — +. Hence, if we
know the stresses at an arbitrary point on the boundary at different instants of time, we can determine both the
direction of a uniformly moving screw dislocation and its position with respect to the point of observation.
I wish to thank M. V. Paukshto for suggesting the problem and for his help.
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